Laporan Akhir 1


Percobaan 

1. Prosedur [kembali]
 1. Persiapan Alat dan Bahan
   * Siapkan 2 unit Raspberry Pi Pico 1 buah potensiometer
   * 1 buah LCD 16x2 dengan modul I2C
   * Breadboard dan jumper wire secukupnya
   * Kabel micro USB untuk koneksi ke komputer
   * Software Thonny IDE dengan MicroPython terinstal

2. Rangkaian Potensiometer dan Pico Transmitter
   * Hubungkan terminal 1 potensiometer ke VCC (3.3V)
   * Hubungkan terminal 3 potensiometer ke GND
   * Hubungkan terminal tengah (wiper ke pin GPIO 26 (ADC0) pada Raspberry Pi Pico pertama
   * Konfigurasikan pin TX (GPIO 0) Pico pertama ke jalur UART menuju Pico kedua

3. Rangkaian UART Antar Pico
   * Sambungkan TX (GPIO 0) dari Pico pertama ke RX (GPIO 1) di Pico kedua
   * Hubungkan juga GND kedua Pico agar referensi ground sama

4. Rangkaian LCD I2C dan Pico Receiver
   * Hubungkan VCC dan GND dari modul LCD I2C ke VCC dan GND pada Pico kedua
   * Sambungkan SDA ke GPIO 4 dan SCL ke GPIO 5 di Pico kedua

5. Pemrograman Pico Transmitter
   * Upload program MicroPython ke Pico pertama:
     * Inisialisasi ADC pada GPIO 26
     * Konfigurasi UART di UART0 (TX=GPIO 0, RX=GPIO 1)
     * Baca nilai ADC dari potensiometer
     * Format data menjadi string dengan awalan `"POT:<nilai>\n"`
     * Kirim data via UART setiap 0.5 detik

6. Pemrograman Pico Receiver
   * Upload program MicroPython ke Pico kedua:
     * Inisialisasi UART0 untuk menerima data
     * Inisialisasi komunikasi I2C (GPIO 4 dan GPIO 5) untuk LCD
     * Terima data UART, decode dan validasi format
     * Jika format sesuai, ambil nilai dan tampilkan di LCD
     * Jika terjadi kesalahan, tampilkan pesan “ERROR” pada LCD

7. Pengujian Sistem
   * Hubungkan kedua Pico ke komputer menggunakan USB
   * Jalankan program di Thonny IDE untuk masing-masing Pico
   * Putar potensiometer dan amati perubahan nilai pada LCD
   * Pastikan komunikasi UART berjalan dan tampilan LCD responsif.

2. Hardware dan Diagram Blok [kembali]
  a. Hardware
1) Laptop yang sudah terinstal Software Thonny 
2) Port sambungan kabel dari laptop ke Raspberry Pi Pico(USB)

3) White Board atau Project Board
4) Raspberry Pi Pico
5) Potensiometer

6) Modul I2C LCD

7) Jumper


b. Blok Diagram
3. Rangkaian Simulasi dan Prinsip Kerja [kembali]

Rangkaian Simulasi: 
  

Prinsip Kerja:

      Pada percobaan ini, prinsip kerja berfokus pada komunikasi data antar dua Raspberry Pi Pico menggunakan protokol UART (Universal Asynchronous Receiver Transmitter). Raspberry Pi Pico pertama bertindak sebagai transmitter yang membaca nilai analog dari potensiometer. Potensiometer memiliki tiga terminal, di mana terminal 1 dihubungkan ke VCC (3.3V), terminal 3 ke ground, dan terminal 2 (wiper) dihubungkan ke pin GPIO 26 yang merupakan pin ADC (Analog to Digital Converter) pada Pico. Ketika potensiometer diputar, tegangan output pada wiper berubah, dan nilai ini dibaca oleh ADC sebagai nilai digital 16-bit dengan rentang 0 hingga 65535. Nilai ini kemudian diformat menjadi string dengan awalan "POT:" dan dikirim melalui pin TX GPIO 0 menggunakan UART.


Sinyal ini diterima oleh Raspberry Pi Pico kedua sebagai receiver, melalui pin RX GPIO 1. Pico kedua membaca data UART tersebut, memprosesnya untuk memastikan formatnya sesuai, kemudian menampilkan nilai potensiometer tersebut ke layar LCD yang terhubung menggunakan komunikasi I2C. LCD tersebut dikendalikan melalui pin SDA (GPIO 4) dan SCL (GPIO 5). Seluruh proses ini berlangsung secara terus-menerus, sehingga setiap perubahan posisi potensiometer akan langsung dikirim dan ditampilkan ke LCD secara real-time. Dengan demikian, percobaan ini menunjukkan bagaimana data analog dari sensor atau input lain dapat dikomunikasikan antar mikrokontroler menggunakan UART, lalu ditampilkan menggunakan antarmuka I2C.

4. Flowchart dan Listing Program [kembali]

Flowchart:




Listing Program:
TX
from machine import Pin, ADC, UART
import time
# Inisialisasi ADC dan UART
pot = ADC(26)  # GPIO 26 (ADC0)
uart = UART(0, baudrate=9600, tx=Pin(0), rx=Pin(1))
while True:
    pot_value = pot.read_u16()  # Baca nilai ADC (0-65535)
    data = f"POT:{pot_value}\n"  # Format data untuk dikirim lewat UART
    uart.write(data)  # Kirim data ke UART
    print("Sent:", data.strip())  # Tampilkan data yang dikirim (untuk debug)
    time.sleep(0.5)  # Delay 0.5 detik
RX
from machine import UART, I2C, Pin
from i2c_lcd import I2cLcd
from time import sleep

# Inisialisasi UART dan I2C
uart = UART(0, baudrate=9600, tx=Pin(0), rx=Pin(1))
i2c = I2C(0, sda=Pin(4), scl=Pin(5))
lcd = I2cLcd(i2c, 0x27, 2, 16)  # Ganti 0x27 jika alamat I2C berbeda
while True:
    if uart.any():
        raw_data = uart.readline()
        try:
            decoded_data = raw_data.decode('utf-8').strip()
            print("Received RAW:", repr(raw_data))  # Tampilkan data mentah (termasuk \n)
            print("Decoded:", decoded_data)  # Data tanpa \n

            if decoded_data.startswith("POT:"):
                pot_value = int(decoded_data.split(':')[1])
                lcd.clear()
                lcd.putstr(f"Value: {pot_value}")
            else:
                raise ValueError("Format salah")
        except Exception as e:
            lcd.clear()
            lcd.putstr("ERROR")
            lcd.move_to(0, 1)
            lcd.putstr(str(e)[:16])  # Tampilkan pesan error maksimal 16 karakter
            print("Error:", e, "| Data:", raw_data)
    sleep(0.1)  # Delay agar tidak terlalu cepat looping

I2C_LCD.py
# forked from https://github.com/T-622/RPI-PICO-I2C-LCD/
import utime
import gc

from lcd_api import LcdApi
from machine import I2C

# PCF8574 pin definitions
MASK_RS = 0x01       # P0
MASK_RW = 0x02       # P1
MASK_E  = 0x04       # P2

SHIFT_BACKLIGHT = 3  # P3
SHIFT_DATA      = 4  # P4-P7

class I2cLcd(LcdApi):
    
    #Implements a HD44780 character LCD connected via PCF8574 on I2C

    def _init_(self, i2c, i2c_addr, num_lines, num_columns):
        self.i2c = i2c
        self.i2c_addr = i2c_addr
        self.i2c.writeto(self.i2c_addr, bytes([0]))
        utime.sleep_ms(20)   # Allow LCD time to powerup
        # Send reset 3 times
        self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
        utime.sleep_ms(5)    # Need to delay at least 4.1 msec
        self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
        utime.sleep_ms(1)
        self.hal_write_init_nibble(self.LCD_FUNCTION_RESET)
        utime.sleep_ms(1)
        # Put LCD into 4-bit mode
        self.hal_write_init_nibble(self.LCD_FUNCTION)
        utime.sleep_ms(1)
        LcdApi._init_(self, num_lines, num_columns)
        cmd = self.LCD_FUNCTION
        if num_lines > 1:
            cmd |= self.LCD_FUNCTION_2LINES
        self.hal_write_command(cmd)
        gc.collect()

    def hal_write_init_nibble(self, nibble):
        # Writes an initialization nibble to the LCD.
        # This particular function is only used during initialization.
        byte = ((nibble >> 4) & 0x0f) << SHIFT_DATA
        self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
        self.i2c.writeto(self.i2c_addr, bytes([byte]))
        gc.collect()
        
    def hal_backlight_on(self):
        # Allows the hal layer to turn the backlight on
        self.i2c.writeto(self.i2c_addr, bytes([1 << SHIFT_BACKLIGHT]))
        gc.collect()
        
    def hal_backlight_off(self):
        #Allows the hal layer to turn the backlight off
        self.i2c.writeto(self.i2c_addr, bytes([0]))
        gc.collect()
        
    def hal_write_command(self, cmd):
        # Write a command to the LCD. Data is latched on the falling edge of E.
        byte = ((self.backlight << SHIFT_BACKLIGHT) |
                (((cmd >> 4) & 0x0f) << SHIFT_DATA))
        self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
        self.i2c.writeto(self.i2c_addr, bytes([byte]))
        byte = ((self.backlight << SHIFT_BACKLIGHT) |
                ((cmd & 0x0f) << SHIFT_DATA))
        self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
        self.i2c.writeto(self.i2c_addr, bytes([byte]))
        if cmd <= 3:
            # The home and clear commands require a worst case delay of 4.1 msec
            utime.sleep_ms(5)
        gc.collect()

    def hal_write_data(self, data):
        # Write data to the LCD. Data is latched on the falling edge of E.
        byte = (MASK_RS |
                (self.backlight << SHIFT_BACKLIGHT) |
                (((data >> 4) & 0x0f) << SHIFT_DATA))
        self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
        self.i2c.writeto(self.i2c_addr, bytes([byte]))
        byte = (MASK_RS |
                (self.backlight << SHIFT_BACKLIGHT) |
                ((data & 0x0f) << SHIFT_DATA))      
        self.i2c.writeto(self.i2c_addr, bytes([byte | MASK_E]))
        self.i2c.writeto(self.i2c_addr, bytes([byte]))
        gc.collect()

lcd-api.py:
# forked from https://github.com/T-622/RPI-PICO-I2C-LCD/
import time

class LcdApi:
    
    # Implements the API for talking with HD44780 compatible character LCDs.
    # This class only knows what commands to send to the LCD, and not how to get
    # them to the LCD.
    #
    # It is expected that a derived class will implement the hal_xxx functions.
    #
    # The following constant names were lifted from the avrlib lcd.h header file,
    # with bit numbers changed to bit masks.
    
    # HD44780 LCD controller command set
    LCD_CLR             = 0x01  # DB0: clear display
    LCD_HOME            = 0x02  # DB1: return to home position

    LCD_ENTRY_MODE      = 0x04  # DB2: set entry mode
    LCD_ENTRY_INC       = 0x02  # DB1: increment
    LCD_ENTRY_SHIFT     = 0x01  # DB0: shift

    LCD_ON_CTRL         = 0x08  # DB3: turn lcd/cursor on
    LCD_ON_DISPLAY      = 0x04  # DB2: turn display on
    LCD_ON_CURSOR       = 0x02  # DB1: turn cursor on
    LCD_ON_BLINK        = 0x01  # DB0: blinking cursor

    LCD_MOVE            = 0x10  # DB4: move cursor/display
    LCD_MOVE_DISP       = 0x08  # DB3: move display (0-> move cursor)
    LCD_MOVE_RIGHT      = 0x04  # DB2: move right (0-> left)

    LCD_FUNCTION        = 0x20  # DB5: function set
    LCD_FUNCTION_8BIT   = 0x10  # DB4: set 8BIT mode (0->4BIT mode)
    LCD_FUNCTION_2LINES = 0x08  # DB3: two lines (0->one line)
    LCD_FUNCTION_10DOTS = 0x04  # DB2: 5x10 font (0->5x7 font)
    LCD_FUNCTION_RESET  = 0x30  # See "Initializing by Instruction" section

    LCD_CGRAM           = 0x40  # DB6: set CG RAM address
    LCD_DDRAM           = 0x80  # DB7: set DD RAM address

    LCD_RS_CMD          = 0
    LCD_RS_DATA         = 1

    LCD_RW_WRITE        = 0
    LCD_RW_READ         = 1

    def _init_(self, num_lines, num_columns):
        self.num_lines = num_lines
        if self.num_lines > 4:
            self.num_lines = 4
        self.num_columns = num_columns
        if self.num_columns > 40:
            self.num_columns = 40
        self.cursor_x = 0
        self.cursor_y = 0
        self.implied_newline = False
        self.backlight = True
        self.display_off()
        self.backlight_on()
        self.clear()
        self.hal_write_command(self.LCD_ENTRY_MODE | self.LCD_ENTRY_INC)
        self.hide_cursor()
        self.display_on()

    def clear(self):
        # Clears the LCD display and moves the cursor to the top left corner
        self.hal_write_command(self.LCD_CLR)
        self.hal_write_command(self.LCD_HOME)
        self.cursor_x = 0
        self.cursor_y = 0

    def show_cursor(self):
        # Causes the cursor to be made visible
        self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
                               self.LCD_ON_CURSOR)

    def hide_cursor(self):
        # Causes the cursor to be hidden
        self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY)

    def blink_cursor_on(self):
        # Turns on the cursor, and makes it blink
        self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
                               self.LCD_ON_CURSOR | self.LCD_ON_BLINK)

    def blink_cursor_off(self):
        # Turns on the cursor, and makes it no blink (i.e. be solid)
        self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY |
                               self.LCD_ON_CURSOR)

    def display_on(self):
        # Turns on (i.e. unblanks) the LCD
        self.hal_write_command(self.LCD_ON_CTRL | self.LCD_ON_DISPLAY)

    def display_off(self):
        # Turns off (i.e. blanks) the LCD
        self.hal_write_command(self.LCD_ON_CTRL)

    def backlight_on(self):
        # Turns the backlight on.
        
        # This isn't really an LCD command, but some modules have backlight
        # controls, so this allows the hal to pass through the command.
        self.backlight = True
        self.hal_backlight_on()

    def backlight_off(self):
        # Turns the backlight off.

        # This isn't really an LCD command, but some modules have backlight
        # controls, so this allows the hal to pass through the command.
        self.backlight = False
        self.hal_backlight_off()

    def move_to(self, cursor_x, cursor_y):
        # Moves the cursor position to the indicated position. The cursor
        # position is zero based (i.e. cursor_x == 0 indicates first column).
        self.cursor_x = cursor_x
        self.cursor_y = cursor_y
        addr = cursor_x & 0x3f
        if cursor_y & 1:
            addr += 0x40    # Lines 1 & 3 add 0x40
        if cursor_y & 2:    # Lines 2 & 3 add number of columns
            addr += self.num_columns
        self.hal_write_command(self.LCD_DDRAM | addr)

    def putchar(self, char):
        # Writes the indicated character to the LCD at the current cursor
        # position, and advances the cursor by one position.
        if char == '\n':
            if self.implied_newline:
                # self.implied_newline means we advanced due to a wraparound,
                # so if we get a newline right after that we ignore it.
                pass
            else:
                self.cursor_x = self.num_columns
        else:
            self.hal_write_data(ord(char))
            self.cursor_x += 1
        if self.cursor_x >= self.num_columns:
            self.cursor_x = 0
            self.cursor_y += 1
            self.implied_newline = (char != '\n')
        if self.cursor_y >= self.num_lines:
            self.cursor_y = 0
        self.move_to(self.cursor_x, self.cursor_y)

    def putstr(self, string):
        # Write the indicated string to the LCD at the current cursor
        # position and advances the cursor position appropriately.
        for char in string:
            self.putchar(char)

    def custom_char(self, location, charmap):
        # Write a character to one of the 8 CGRAM locations, available
        # as chr(0) through chr(7).
        location &= 0x7
        self.hal_write_command(self.LCD_CGRAM | (location << 3))
        self.hal_sleep_us(40)
        for i in range(8):
            self.hal_write_data(charmap[i])
            self.hal_sleep_us(40)
        self.move_to(self.cursor_x, self.cursor_y)

    def hal_backlight_on(self):
        # Allows the hal layer to turn the backlight on.
        # If desired, a derived HAL class will implement this function.
        pass

    def hal_backlight_off(self):
        # Allows the hal layer to turn the backlight off.
        # If desired, a derived HAL class will implement this function.
        pass

    def hal_write_command(self, cmd):
        # Write a command to the LCD.
        # It is expected that a derived HAL class will implement this function.
        raise NotImplementedError

    def hal_write_data(self, data):
        # Write data to the LCD.
        # It is expected that a derived HAL class will implement this function.
        raise NotImplementedError

    def hal_sleep_us(self, usecs):
        # Sleep for some time (given in microseconds)
        time.sleep_us(usecs)

5. Analisa [kembali]


6. Kondisi [kembali]

-

7. Video Simulasi [kembali]


8. Download file [kembali]

Analisa [Tekaann]
Vid. Simulasi [Tekaann]    
Datasheet Motor servo [tekan disini]
Datasheet STM32F103C8 [tekan disini]
Datasheet Raspberry Pi Pico [tekan disini]
Datasheet buzzer [tekan disini]
Prograam Thonny [tekan disini]

Komentar

Postingan populer dari blog ini

HOME

Modul 1

HOME